МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБНИНСКИЙ ИНСТИТУТ АТОМНОЙ ЭНЕРГЕТИКИ

 филиал федерального государственного автономного образовательного учреждения высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

(ИФИМ ЧКИН ЄТАИ)

ТЕХНИКУМ ИАТЭ НИЯУ МИФИ

Утверждено

Ученый совет ИАТЭ НИЯУ МИФИ

Протокол №23.4 от 24.04.2023 г.

КОМПЛЕКТ КОНТРОЛЬНО – ИЗМЕРИТЕЛЬНЫХ МАТЕРИАЛОВ

текущего и промежуточного контроля успеваемости

ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ФИЗИКА

Направление подготовки (специальность)

46.02.01 «Документационное обеспечение управления и архивоведение»

Квалификация (степень) выпускника

специалист по документационному обеспечению управления, архивист очная

Форма обучения

Комплект контрольно-измерительных материалов по учебной дисциплине «техническая механика» разработан на основе Федерального государственного образовательного стандарта (далее ФГОС СПО) по специальности среднего профессионального образования 46.02.01 «Документационное обеспечение управления и архивоведение»

Разработчики:

ИАТЭ НИЯУ МИФИ, преподаватель, Д.Д. Хайрова (место работы) (занимаемая должность) (инициалы, фамилия)

Одобрено на заседании предметной цикловой комиссии математических, естественнонаучных и общепрофессиональных-электротехнических дисциплин

«04» апреля 2023 года, № протокола 09

Председатель предметной цикловой комиссии _____ (В.И. Бабанина)

СОДЕРЖАНИЕ

I Паспорт комплекта контрольно-измерительных материалов	4
1 Область применения	4
2Объекты оценивания – результаты освоения УД	4
3 Формы контроля и оценки результатов освоения УД	6
4 Система оценивания комплекта КИМ текущего контроля и	8
промежуточной аттестации	
II Текущий контроль и оценка результатов обучения УД	9
Спецификация коллоквиума №1	10
Спецификация коллоквиума №2	12
Спецификация коллоквиума №3	15
Спецификация коллоквиума №4	18
Спецификация коллоквиума №5	21
Спецификация коллоквиума №6	24
Спецификация коллоквиума №7	27
Спецификация коллоквиума №8	30
III Промежуточная аттестация по УД	35
Спецификация экзамена	35
Вопросы экзаменационных билетов	38

І ПАСПОРТ КОМПЛЕКТА КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫХ МАТЕРИАЛОВ

1 Область применения

Комплект контрольно - измерительных материалов (КИМ) предназначен для проверки результатов освоения учебной дисциплины (УД) «Физика», основной профессиональной образовательной программы (далее ОПОП) по специальности СПО 46.02.01 «Документационное обеспечение управления и архивоведение»

2 Объекты оценивания – результаты освоения УД

КИМ позволяет оценить следующие результаты освоения учебной дисциплины «Физика» в соответствии с ФГОС специальности 46.02.01 «Документационное обеспечение управления и архивоведение» и рабочей программой дисциплины умения:

описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;

отличать гипотезы от научных теорий;

делать выводы на основе экспериментальных данных;

приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснить известные явления природы и научные факты, предсказывать еще неизвестные явления;

приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;

воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.

применять полученные знания для решения физических задач;

определять характер физического процесса по графику, таблице, формуле;

измерять ряд физических величин, представляя результаты измерений с учетом погрешностей;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

для обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;

оценки влияния на организм человека и другие организмы загрязнения окружающей среды;

рационального природопользования и защиты окружающей среды.

знания:

смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения; планета, звезда, галактика, Вселенная;

смысл физических величин: скорость, ускорение, масса, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;

смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;

вклад российских и зарубежных учёных, оказавших наибольшее влияние на развитие физики;

Вышеперечисленные умения и знания направлены на формирование у студентов следующих профессиональных и общих компетенций

Код	Наименование результата обучения
OK1	Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам
ОК2	Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности
ОК3	Планировать и реализовывать собственное профессиональное и личностное развитие
ОК4	Работать в коллективе и команде, эффективно взаимодействовать с коллегами, руководством, клиентами
OK5	Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста
ОК6	Проявлять гражданско-патриотическую позицию, демонстрировать осознанное поведение на основе традиционных общечеловеческих ценностей, применять стандарты антикоррупционного поведения
ОК7	Содействовать сохранению окружающей среды, ресурсосбережению, эффективно действовать в чрезвычайных ситуациях
ОК8	Использовать средства физической культуры для сохранения и укрепления здоровья в процессе профессиональной деятельности и поддержания необходимого уровня физической подготовленности
ОК9	Использовать информационные технологии в профессиональной деятельности

3 Формы контроля и оценки результатов освоения УД

Контроль и оценка результатов освоения — это выявление, измерение и оценивание знаний, умений и формирующихся общих компетенций в рамках освоения УД. В соответствии с учебным планом специальности 46.02.01 «Документационное обеспечение управления и архивоведение» рабочей программой дисциплины «Физика» предусматривается текущий и промежуточный контроль результатов освоения.

3.1 Формы текущего контроля

Текущий контроль успеваемости представляет собой проверку усвоения учебного материала, регулярно осуществляемую на протяжении курса обучения. Текущий контроль результатов освоения УД в соответствии с рабочей программой и календарно-тематическим планом происходит при использовании следующих обязательных форм контроля:

- выполнение и защита лабораторных работ;
- сдача коллоквиумов по пройденному материалу;

Во время проведения учебных занятий дополнительно используются следующие формы текущего контроля – устный опрос, решение задач.

Сдача коллоквиумов по пройденному материалу. Коллоквиум проводится с целью контроля усвоенных умений и знаний и последующего анализа типичных ошибок и затруднений студентов в конце изучения темы или раздела. Согласно календарнотематическому плану УД «Физика» предусмотрено проведение следующих коллоквиумов:

- Коллоквиум №1 по темам «Кинематика. Динамика»
- Коллоквиум №2 по теме «Законы сохранения в механике»
- Коллоквиум №3 по теме «Основы молекулярно-кинетической теории»
- Коллоквиум №4 по теме «Термодинамика»
- Коллоквиум №5 по теме «Электрическое поле»
- Коллоквиум №6 по теме «Постоянный электрический ток»

Сводная таблица по применяемым формам и методам текущего контроля и оценки результатов обучения

Результаты обучения	Формы и методы контроля и оценки	
(освоенные умения, усвоенные знания)	результатов обучения	
Освоенные умения:	Projection of terms	
описывать и объяснять физические явления	Выполнение и защита лабораторных работ	
и свойства тел;	Оценка правильности выполнения	
,	самостоятельной работы	
	Решение задач во время занятия	
	Сдача коллоквиума	
отличать гипотезы от научных теорий;	Выполнение и защита лабораторных работ	
<i>y</i> 1 <i>,</i>	Оценка правильности выполнения	
	самостоятельной работы	
	Сдача коллоквиума	
делать выводы на основе	Выполнение и защита лабораторных работ	
экспериментальных данных;	Zamomio il onzimi ilio opini opini pino il	
приводить примеры практического	Выполнение и защита лабораторных работ	
использования физических знаний;	Оценка правильности выполнения	
T,	самостоятельной работы	
	Сдача коллоквиума	
применять полученные знания для решения	Решение задач во время занятия	
	-	
<u> </u>	·	
no rpuquity, ruestinge, quepingine.	_	
	-	
Усвоенные знания:	odn in remieral, in	
	Выполнение и защита лабораторных	
4 4	1 1	
	1	
	-	
	±	
	-	
смысл физических величин		
1	1 1	
	-	
	-	
	-	
смысл физических законов	<u> </u>	
1	работ	
	-	
	Решение задач во время занятия	
	Сдача коллоквиума	
физических задач; определять характер физического процесса по графику, таблице, формуле. Усвоенные знания: смысл физических понятий смысл физических величин смысл физических законов	Выполнение и защита лабораторных работ Оценка правильности выполнения самостоятельной работы Сдача коллоквиума Выполнение и защита лабораторных работ Оценка правильности выполнения самостоятельной работы Решение задач во время занятия Сдача коллоквиума Выполнение и защита лабораторных работ Оценка правильности выполнения самостоятельной работы Решение задач во время занятия Сдача коллоквиума Выполнение и защита лабораторных работ Оценка правильности выполнения Сдача коллоквиума Выполнение и защита лабораторных работ Оценка правильности выполнения самостоятельной работы Оценка правильности выполнения самостоятельной работы Решение задач во время занятия	

3.2 Форма промежуточной аттестации

Промежуточная аттестация по УД «Физика»— дифференцированный зачет, спецификация которого содержится в данном КИМ.

Студенты допускаются к сдаче экзамена при выполнении всех видов самостоятельной работы, лабораторных работ и коллоквиумов, предусмотренных рабочей программой и календарно-тематическим планом УД.

4 Система оценивания комплекта КИМ текущего контроля и промежуточной аттестации

Система оценивания имеет единые критерии и описана в соответствующих методических рекомендациях, в спецификации к коллоквиумам и итоговой аттестации. При оценивании лабораторной и самостоятельной работы студента учитывается следующее:

- качество выполнения практической части работы;
- качество оформления отчета по работе;
- качество устных ответов на контрольные вопросы при защите работы.

Каждый вид работы оценивается по пятибалльной шкале.

- -«отлично» за глубокое и полное овладение содержанием учебного материала, в котором студент свободно и уверенно ориентируется; за умение практически применять теоретические знания, высказывать и обосновывать свои суждения. Оценка «отлично» предполагает грамотное и логичное изложение ответа.
- «хорошо» если студент полно освоил учебный материал, владеет основной терминологией и понятийным аппаратом, ориентируется в изученном материале, осознанно применяет теоретические знания на практике, грамотно излагает ответ, но содержание и форма ответа имеют отдельные неточности.
- «удовлетворительно» если студент обнаруживает знание и понимание основных положений учебного материала, но излагает его неполно, непоследовательно, допускает неточности, в применении теоретических знаний при ответе на практико-ориентированные вопросы; не умеет доказательно обосновать собственные суждения, владеет только базовой терминологией.
- «неудовлетворительно» если студент имеет разрозненные, бессистемные знания, допускает ошибки в определении базовых понятий, искажает их смысл; не может практически применять теоретические знания, не владеет терминологией.

ІІ ТЕКУЩИЙ КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОБУЧЕНИЯ УД

Спецификация

коллоквиума №1 по УД «Физика»

- 1 Назначение коллоквиума оценить уровень подготовки студентов по УД «Физика» по темам «Кинематика. Динамика» с целью текущей проверки знаний и умений.
- 2 Содержание коллоквиума определяется в соответствии с рабочей программой УД и содержанием раздела «Физика».
- 3 Принципы отбора содержания коллоквиума: ориентация на требования к результатам освоения раздела «Физика», представленным в рабочей программе УД: уметь:

описывать и объяснять физические явления и свойства тел;

отличать гипотезы от научных теорий;

делать выводы на основе экспериментальных данных;

приводить примеры практического использования физических знаний;

применять полученные знания для решения физических задач;

определять характер физического процесса по графику, таблице, формуле.

- 4 Структура коллоквиума
- 4.1 Коллоквиум по темам «Кинематика. Динамика» состоит из устного опроса и выполнения практических заданий.
 - 4.2 Задания практической части дифференцируются по уровню сложности.
 - 4.3 Задания практической части предлагаются в традиционной форме
- 4.4 Варианты практической части равноценны по трудности, одинаковы по структуре, параллельны по расположению заданий: под одним и тем же порядковым номером во всех вариантах.

Инструкция для студентов

- 1 Форма проведения текущего контроля знаний по темам «Кинематика. Динамика» дисциплины «Физика»— коллоквиум.
- 2 Принципы отбора содержания коллоквиума: ориентация на требования к результатам освоения тем *«Кинематика. Динамика»*, представленным в рабочей программе УД:

уметь:

описывать и объяснять физические явления и свойства тел; делать выводы на основе экспериментальных данных; применять полученные знания для решения физических задач;

знать:

- -- основные понятия и аксиом статики, кинематики и динамики
 - 3 Структура письменной контрольной работы
- 3.1 Коллоквиум по темам «Кинематика. Динамика» состоит из устного опроса и выполнения практических заданий.
- 3.2 Задания практической части предлагаются в традиционной форме Первое задание решение аналитической задачи с использованием уравнения движения и уравнения скорости.

Вторе задание – решение аналитической задачи на нахождение кинематических величин. Третье задание – решение аналитической задачи по определению конкретной силы. Четвертое задание – решение аналитической задачи на движение тела под действием нескольких сил.

- 4. Время выполнения заданий практической части. На выполнение заданий практической части предлагаются 80 минут.
 - 5 Рекомендации по подготовке к коллоквиуму

При подготовке к коллоквиуму рекомендуется использовать конспекты лекций, а также:

- учебники:
- интернет ресурсы:

Чтобы успешно справиться с заданиями коллоквиума, нужно внимательно прочитать вопросы. Именно внимательное, вдумчивое чтение и понимание вопроса — половина успеха. Будьте внимательны! Обдумывайте тщательно и неторопливо свои ответы! Будьте уверенны в своих силах! Желаем успеха!

«Национальный исследовательский ядерный университет «МИФИ» ИАТЭ НИЯУ МИФИ ТЕХНИКУМ

Вопросы для подготовки устного ответа коллоквиума

Тема 1. Кинематика. Динамика

- 1. Система отсчёта. Дайте определение.
- 2. Путь. Дайте определение.
- 3. Перемещение. Дайте определение.
- 4. Материальная точка. Дайте определение.
- 5. Равномерное прямолинейное движение. Дайте определение.
- 6. Физический смысл скорости при <u>равномерном</u> движении. Укажите формулу и единицу в системе СИ.
- 7. Нарисуйте график зависимости скорости от времени при <u>равномерном</u> движении (V(t)). Как по графику найти перемещение тела?
- 8. Нарисуйте график зависимости перемещения от времени при равномерном движении (S(t)).
- 9. Запишите уравнение равномерного движения (x(t)).
- 10. Физический смысл ускорения. Укажите формулу и единицу в системе СИ.
- 11. Как найти скорость тела при равнопеременном движении? Укажите формулу.
- 12. Нарисуйте график зависимости скорости от времени при равнопеременном движении (V(t)), начальная скорость равна нулю, тело движется в положительном направлении.
- 13. Как найти перемещение при равнопеременном движении? Укажите расчётную формулу.
- 14. Запишите уравнение <u>равнопеременного</u> движения (x(t)).
- 15. Нарисуйте график зависимости координаты от времени при равнопеременном движении (x(t)), начальная координата равна нулю, тело движется в положительном направлении.
- 16. Дайте определение массы тела. Укажите единицу массы в системе СИ.
- 17. Как читается первый закон Ньютона?
- 18. Дайте определение инертности.
- 19. Сформулируйте второй закон Ньютона. Запишите его в математическом виде.

Форма варианта заданий практической части

Задача № 1

По заданному уравнению скорости: V = 5 + 3t запишите уравнение движения. Вычислите перемещение тела за первые 7 с движения.

Задача № 2

Какой путь пройдёт тело, если оно будет двигаться 5 секунд с постоянной скоростью $10 \, \text{м/c}$, а затем ещё 5 секунд – с ускорением $5 \, \text{м/c}^2$.

Задача № 3

С какой силой будет давить на дно шахтной клети груз массой 100 кг, если клеть будет подниматься вверх вертикально с ускорением 24,5 см/с²?

Задача № 4

Железнодорожный состав отходит от станции. Какой скорости он достигает на расстоянии 1 км, если электровоз развивает силу тяги в 220 кH, а коэффициент движению составляет 0,004?

Спецификация

коллоквиума №2 по УД «Физика»

- 1 Назначение коллоквиума оценить уровень подготовки студентов по УД «Физика» по теме «Законы сохранения в механике» с целью текущей проверки знаний и умений.
- 2 Содержание коллоквиума определяется в соответствии с рабочей программой УД и содержанием раздела «Физика».
- 3 Принципы отбора содержания коллоквиума: ориентация на требования к результатам освоения раздела «Физика», представленным в рабочей программе УД: уметь:

описывать и объяснять физические явления и свойства тел;

отличать гипотезы от научных теорий;

делать выводы на основе экспериментальных данных;

приводить примеры практического использования физических знаний;

применять полученные знания для решения физических задач;

определять характер физического процесса по графику, таблице, формуле.

- 4 Структура коллоквиума
- 4.1 Коллоквиум по теме «Законы сохранения в механике» состоит из устного опроса и выполнения практических заданий.
 - 4.2 Задания практической части дифференцируются по уровню сложности.
 - 4.3 Задания практической части предлагаются в традиционной форме
- 4.4 Варианты практической части равноценны по трудности, одинаковы по структуре, параллельны по расположению заданий: под одним и тем же порядковым номером во всех вариантах.

Инструкция для студентов

- 1 Форма проведения текущего контроля знаний по теме *«Законы сохранения в механике»* дисциплины *«Физика»* коллоквиум.
- 2 Принципы отбора содержания коллоквиума: ориентация на требования к результатам освоения темы *«Законы сохранения в механике»*, представленным в рабочей программе УД:

уметь:

описывать и объяснять физические явления и свойства тел; делать выводы на основе экспериментальных данных; применять полученные знания для решения физических задач;

знать:

смысл понятий: физическое явление, гипотеза, закон, взаимодействие;

смысл физических величин: скорость, ускорение, масса, импульс, работа, механическая энергия;

смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса;

- 3 Структура коллоквиума
- 3.1 Коллоквиум по теме «Законы сохранения в механике» состоит из устного опроса и выполнения практических заданий.
 - 3.2 Задания практической части предлагаются в традиционной форме

Первое задание – решение аналитической задачи с использованием закона сохранения импульса.

Вторе задание – решение аналитической задачи на нахождение механической работы, мощности при движении тела по горизонтали.

Третье задание – решение аналитической задачи на нахождение механической работы при движении тела по вертикали.

Четвертое задание – решение аналитической задачи с использованием закона сохранения энергии.

- 4. Время выполнения заданий практической части. На выполнение заданий практической части предлагаются 80 минут.
 - 5 Рекомендации по подготовке к коллоквиуму

При подготовке к коллоквиуму рекомендуется использовать конспекты лекций, а также:

- учебники:
- интернет ресурсы:

Чтобы успешно справиться с заданиями коллоквиума, нужно внимательно прочитать вопросы. Именно внимательное, вдумчивое чтение и понимание вопроса — половина успеха. Будьте внимательны! Обдумывайте тщательно и неторопливо свои ответы! Будьте уверенны в своих силах! Желаем успеха!

«Национальный исследовательский ядерный университет «МИФИ» ИАТЭ НИЯУ МИФИ ТЕХНИКУМ

Вопросы для подготовки устного ответа коллоквиума Тема 2. Законы сохранения в механике

- 1. Импульс тела. Определение и единица в системе СИ.
- 2. Закон сохранения импульса.
- 3. Механическая работа. Определение и единица в системе СИ.
- 4. Мощность. Определение и единица в системе СИ.
- 5. Выражение мощности через силу и скорость. Указать условия, при которых можно применять данную формулу.
- 6. Механическая энергия. Определение и единица в системе СИ.
- 7. Виды механической энергии. Их определения. Формулы.
- 8. Связь работы с изменением кинетической и потенциальной энергий.
- 9. Закон сохранения механической энергии.
- 10. Превращения энергии на примере свободного падения тела.

Форма варианта заданий практической части

Задача № 1

Координата тела изменяется по закону $x=-6+3t-0,25t^2$, а импульс — по закону p=12-2t. Найдите массу тела и действующую на него силу.

Задача № 2

Человек, идущий по берегу, тянет против течения на верёвке лодку, прикладывая силу 200 Н. Угол между верёвкой и берегом 30° . Какую работу совершил человек при перемещении лодки на 5 м?

Задача № 3

Подъёмный кран опускает груз массой 500 кг вертикально на 5 м, притормаживая его с ускорением 1 м/c^2 . Какую работу совершает подъёмный кран?

Залача № 4

Футбольный мяч после удара поднялся на высоту 10 м. Какова была его скорость на этой высоте, если начальная скорость мяча 15 м/с? Сопротивлением воздуха можно пренебречь?

Спецификация

коллоквиума №3 по УД «Физика»

- 1 Назначение коллоквиума оценить уровень подготовки студентов по УД «Физика» по теме «Основы молекулярно-кинетической теории» с целью текущей проверки знаний и умений.
- 2 Содержание коллоквиума определяется в соответствии с рабочей программой УД и содержанием темы «Основы молекулярно-кинетической теории»
- 3 Принципы отбора содержания коллоквиума: ориентация на требования к результатам освоения темы «Основы молекулярно-кинетической теории» представленным в рабочей программе УД:

уметь:

описывать и объяснять физические явления и свойства тел; отличать гипотезы от научных теорий;

делать выводы на основе экспериментальных данных;

приводить примеры практического использования физических знаний;

применять полученные знания для решения физических задач;

определять характер физического процесса по графику, таблице, формуле.

- 4 Структура коллоквиума
- 4.1 Коллоквиум по теме «Основы молекулярно-кинетической теории» состоит из устного опроса и выполнения практических заданий.
 - 4.2 Задания практической части дифференцируются по уровню сложности.
 - 4.3 Задания практической части предлагаются в традиционной форме
- 4.4 Варианты практической части равноценны по трудности, одинаковы по структуре, параллельны по расположению заданий: под одним и тем же порядковым номером во всех вариантах.

Инструкция для студентов

- 1 Форма проведения текущего контроля знаний по теме «Основы молекулярнокинетической теории» дисциплины «Физика»— коллоквиум.
- 2 Принципы отбора содержания коллоквиума: ориентация на требования к результатам освоения темы «Основы молекулярно-кинетической теории», представленным в рабочей программе УД:

уметь:

описывать и объяснять физические явления и свойства тел; делать выводы на основе экспериментальных данных; применять полученные знания для решения физических задач;

знать:

смысл понятий: физическое явление, гипотеза, закон, теория, вещество;

смысл физических величин: абсолютная температура, средняя кинетическая энергия частиц вещества;

- 3 Структура коллоквиума
- 3.1 Коллоквиум по теме «Основы молекулярно-кинетической теории» состоит из устного опроса и выполнения практических заданий.
- 3.2 Задания практической части предлагаются в традиционной форме Первое задание проверка знания физических формул по теме коллоквиума.

Вторе задание – решение графической задачи на изопроцессы.

Третье задание – решение аналитической задачи с использованием газовых законов.

Четвертое задание — решение аналитической задачи по определению микроскопических параметров газа.

- 4. Время выполнения заданий практической части. На выполнение заданий практической части предлагаются 80 минут.
 - 5 Рекомендации по подготовке к коллоквиуму

При подготовке к коллоквиуму рекомендуется использовать конспекты лекций, а также:

- учебники:
- интернет ресурсы:

Чтобы успешно справиться с заданиями коллоквиума, нужно внимательно прочитать вопросы. Именно внимательное, вдумчивое чтение и понимание вопроса — половина успеха. Будьте внимательны! Обдумывайте тщательно и неторопливо свои ответы! Будьте уверенны в своих силах! Желаем успеха!

«Национальный исследовательский ядерный университет «МИФИ» ИАТЭ НИЯУ МИФИ ТЕХНИКУМ

Вопросы для подготовки устного ответа коллоквиума Тема 3. Основы молекулярно-кинетической теории

- 1. Сформулировать основные положения Молекулярно-кинетической теории
- 2. Перечислить прямые и косвенные доказательства первого положения МКТ
- 3. Что называется относительной атомной массой, количеством вещества, молем, молярной массой?
- 4. Как найти молярную массу вещества, имея таблицу Менделеева? В чём она измеряется?
- 5. Как доказать, что молекулы движутся?
- 6. Чем объяснить, что два рядом расположенных атома притягиваются друг к другу? Отталкиваются?
- 7. Приведите примеры, свидетельствующие о наличии сил отталкивания и притяжения между атомами.
- 8. Нарисовать график взаимодействия атомов.
- 9. Что такое идеальный газ?
- 10. Уравнение Клаузиуса.
- 11. Какое соотношение между t°C и К? Почему нельзя достичь абсолютного нуля температур?
- 12. Уравнение Клапейрона-Менделеева.
- 13. Объединённый газовый закон.
- 14. Формулировка и формула закона Бойля-Мариотта. Какому процессу он соответствует?
- 15. Формулировка и формула закона Гей-Люссака. Какому процессу он соответствует?
- 16. Формулировка и формула закона Шарля. Какому процессу он соответствует?

Форма варианта заданий практической части

Задача № 1

Какая физическая величина х вычисляется по формуле

$$x = \frac{m}{\mu V} RT$$

Задача № 2

На рисунке представлен график зависимости давления данной массы идеального газа от объёма. Назовите процессы, протекающие в газе.

Задача № 3

Вычислите массу одной молекулы углекислого газа (CO_2).

Задача № 4

Воздух при 0°С и давлении $1 \cdot 10^5$ Па занимает объём $1 \cdot 10^{-3}$ м³. При какой температуре объём воздуха будет равен $1,5 \cdot 10^{-3}$ м³ при давлении $1,2 \cdot 10^5$ Па?

Спецификация

коллоквиума №4 по УД «Физика»

- 1 Назначение коллоквиума оценить уровень подготовки студентов по УД «Физика» по теме «*Термодинамика*» с целью текущей проверки знаний и умений.
- 2 Содержание коллоквиума определяется в соответствии с рабочей программой УД и содержанием темы «*Термодинамика*»
- 3 Принципы отбора содержания коллоквиума: ориентация на требования к результатам освоения темы *«Термодинамика»* представленным в рабочей программе УД: уметь:

описывать и объяснять физические явления и свойства тел;

отличать гипотезы от научных теорий;

делать выводы на основе экспериментальных данных;

приводить примеры практического использования физических знаний;

применять полученные знания для решения физических задач;

определять характер физического процесса по графику, таблице, формуле.

- 4 Структура коллоквиума
- 4.1 Коллоквиум по теме *«Термодинамика»*состоит из устного опроса и выполнения практических заданий.
 - 4.2 Задания практической части дифференцируются по уровню сложности.
 - 4.3 Задания практической части предлагаются в традиционной форме
- 4.4 Варианты практической части равноценны по трудности, одинаковы по структуре, параллельны по расположению заданий: под одним и тем же порядковым номером во всех вариантах.

Инструкция для студентов

- 1 Форма проведения текущего контроля знаний по теме *«Термодинамика»* дисциплины *«Физика»* коллоквиум.
- 2 Принципы отбора содержания коллоквиума: ориентация на требования к результатам освоения темы *«Термодинамика»*, представленным в рабочей программе УД: уметь:

описывать и объяснять физические явления и свойства тел; делать выводы на основе экспериментальных данных; применять полученные знания для решения физических задач;

знать:

смысл физических величин: внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты,

смысл физических законов термодинамики;

- 3 Структура коллоквиума
- 3.1 Коллоквиум по теме *«Термодинамика»*состоит из устного опроса и выполнения практических заданий.
- 3.2 Задания практической части предлагаются в традиционной форме Первое задание решение аналитической задачи по нахождению внутренней энергии газа. Вторе задание решение графической задачи на нахождение работы газа при его расширении.

Третье задание – решение аналитической задачи по определению количества теплоты.

Четвертое задание – решение аналитической задачи с использованием второго начала термодинамики.

- 4. Время выполнения заданий практической части. На выполнение заданий практической части предлагаются 80 минут.
 - 5 Рекомендации по подготовке к коллоквиуму

При подготовке к коллоквиуму рекомендуется использовать конспекты лекций, а также:

- учебники:
- интернет ресурсы:

Чтобы успешно справиться с заданиями коллоквиума, нужно внимательно прочитать вопросы. Именно внимательное, вдумчивое чтение и понимание вопроса — половина успеха. Будьте внимательны! Обдумывайте тщательно и неторопливо свои ответы! Будьте уверенны в своих силах! Желаем успеха!

«Национальный исследовательский ядерный университет «МИФИ» ИАТЭ НИЯУ МИФИ ТЕХНИКУМ

Вопросы для подготовки устного ответа коллоквиума Тема 4. Основы термодинамики

- 1. Что называют внутренней энергией тела?
- 2. За счёт чего может изменяться внутренняя энергия тела?
- 3. Что называют количеством теплоты?
- 4. Какой вид имеет формула для подсчёта количества теплоты, необходимой для нагревания тела?
- 5. В каких единицах выражают количество теплоты?
- 6. Что называют удельной теплоёмкостью вещества? Её единица?
- 7. Формула, отражающая понятие удельной теплоёмкости вещества.
- 8. Что называют теплоёмкостью тела?
- 9. Как формулируют закон сохранения энергии?
- 10. Первое начало термодинамики. Формула и формулировка.
- 11. Первое начало термодинамики для изотермического и изохорного процессов.
- 12. Формула для расчёта работы, совершаемой газом при изменении его объёма.
- 13. Определение графически работы при изобарном расширении газа.
- 14. Какой процесс называют адиабатным?
- 15. Какие бывают два вида парообразования и в чём они в принципе отличаются?
- 16. Протекание процесса испарения с точки зрения молекулярного строения жилкости.
- 17. От чего зависит интенсивность процесса парообразования?
- 18. Определение удельной теплоты парообразования.
- 19. Что такое насыщенный и ненасыщенный пар?
- 20. Свойства насыщенного пара.
- 21. Процесс кипения.
- 22. Как зависит температура кипения от внешнего давления и почему?
- 23. Что называется точкой кипения?
- 24. Что называется абсолютной и относительной влажностью воздуха?
- 25. Как называются приборы, служащие для определения влажности воздуха. Их устройство.
- 26. Работа с психрометром и психрометрической таблицей.

Форма варианта заданий практической части

Залача № 1

Чему равна внутренняя энергия 20 моль одноатомного идеального газа при температуре -73°C?

Задача № 2

Определите работу, совершённую газом, при переходе из состояния 1 в состояние 2.

Задача № 3

Чем отличается количество теплоты от внутренней энергии?

Задача № 4

При изохорном нагревании 50 г гелия его температура повысилась на 40°. Какое количество теплоты получил газ?

Спецификация

коллоквиума №5 по УД «Физика»

- 1 Назначение коллоквиума оценить уровень подготовки студентов по УД «Физика» по теме «Электрическое поле» с целью текущей проверки знаний и умений.
- 2 Содержание коллоквиума определяется в соответствии с рабочей программой УД и содержанием темы «Электрическое поле».
- 3 Принципы отбора содержания коллоквиума: ориентация на требования к результатам освоения темы «Электрическое поле», представленным в рабочей программе УД:

уметь:

описывать и объяснять физические явления и свойства тел;

отличать гипотезы от научных теорий;

делать выводы на основе экспериментальных данных;

приводить примеры практического использования физических знаний;

применять полученные знания для решения физических задач;

определять характер физического процесса по графику, таблице, формуле.

- 4 Структура коллоквиума
- 4.1 Коллоквиум по теме «Электрическое поле» состоит из устного опроса и выполнения практических заданий.
 - 4.2 Задания практической части дифференцируются по уровню сложности.
 - 4.3 Задания практической части предлагаются в традиционной форме
- 4.4 Варианты практической части равноценны по трудности, одинаковы по структуре, параллельны по расположению заданий: под одним и тем же порядковым номером во всех вариантах.

Инструкция для студентов

- 1 Форма проведения текущего контроля знаний по теме *«Электрическое поле»* дисциплины *«Физика»* коллоквиум.
- 2 Принципы отбора содержания коллоквиума: ориентация на требования к результатам освоения темы «Электрическое поле», представленным в рабочей программе УД:

уметь:

описывать и объяснять физические явления и свойства тел; делать выводы на основе экспериментальных данных; применять полученные знания для решения физических задач;

знать:

смысл физических величин: элементарный электрический заряд;

- 3 Структура коллоквиума
- 3.1 Коллоквиум по теме *«Электрическое поле»*состоит из устного опроса и выполнения практических заданий.
- 3.2 Задания практической части предлагаются в традиционной форме Первое задание решение аналитической задачи с использованием закона Кулона Вторе задание решение аналитической задачи на нахождение напряженности электрического поля.

Третье задание – решение аналитической задачи по определению потенциала в некоторой точке электрического поля.

Четвертое задание — решение аналитической задачи по определению электрической емкости конденсатора

- 4. Время выполнения заданий практической части. На выполнение заданий практической части предлагаются 80 минут.
 - 5 Рекомендации по подготовке к коллоквиуму

При подготовке к коллоквиуму рекомендуется использовать конспекты лекций, а также:

- учебники:
- интернет ресурсы:

Чтобы успешно справиться с заданиями коллоквиума, нужно внимательно прочитать вопросы. Именно внимательное, вдумчивое чтение и понимание вопроса — половина успеха. Будьте внимательны! Обдумывайте тщательно и неторопливо свои ответы! Будьте уверенны в своих силах! Желаем успеха!

«Национальный исследовательский ядерный университет «МИФИ» ИАТЭ НИЯУ МИФИ ТЕХНИКУМ

Вопросы для подготовки устного ответа коллоквиума Тема 5. Электрическое поле

- 1. Какие взаимодействия называют электромагнитными?
- 2. Что такое электрический заряд?
- 3. Чем отличаются друг от друга электрические заряды?
- 4. Какой заряд называют элементарным? Каково его значение?
- 5. Что такое дискретность электрических зарядов?
- 6. Какой заряд называют точечным?
- 7. Как формулируют закон сохранения зарядов?
- 8. Когда тело является электрически нейтральным? Когда заряженным?
- 9. Что называют зарядом тела?
- 10. В чём состоит явление электризации? Какие виды электризации существуют?
- 11. Как формулируют и записывают в общем виде закон Кулона для взаимодействия зарядов?
- 12. Какая величина характеризует влияние среды на силу взаимодействия электрических зарядов? Объясните её физический смысл.
- 13. Что такое электрическое поле?
- 14. Какое поле называют электростатическим?
- 15. Какой заряд называют пробным?
- 16. Что называют напряжённостью электрического поля? Какая формула выражает сущность этого понятия?
- 17. По какой формуле определяется напряжённость поля точечного электрического заряда?
- 18. Какое электростатическое поле называют однородным?
- 19. Какими свойствами обладают линии напряжённости электрического поля?
- 20. .Приведите примеры графического изображения электрических полей.

Форма варианта заданий практической части

Задача № 1

Два одинаковых заряда взаимодействуют в вакууме с силой 0,1 Н. Расстояние между зарядами равно 6 м. Найти величину этих зарядов.

Задача № 2

Напряженность электрического поля в керосине, образованного точечным зарядом $1 \cdot 10^{-10} \, K_{7}$, на некотором расстоянии от него равна 5 Н/Кл. Определите расстояние от заряда до данной точки поля и силу, с которой поле действует на заряд $3 \cdot 10^{-6} \, K_{7}$, помещённый в данную точку.

Залача № 3

Потенциальная энергия заряда 2 нКл в электрическом поле равна 6 мкДж. Чему равен потенциал поля в этой точке?

Задача № 4

В паспорте конденсатора указано: «150 мкФ, 200 В». Какой наибольший допустимый электрический заряд можно сообщить данному конденсатору?

Спецификация

коллоквиума №6 по УД «Физика»

- 1 Назначение коллоквиума оценить уровень подготовки студентов по УД «Физика» по теме «Постоянный электрический ток» с целью текущей проверки знаний и умений.
- 2 Содержание коллоквиума определяется в соответствии с рабочей программой УД и содержанием темы «Постоянный электрический ток»
- 3 Принципы отбора содержания коллоквиума: ориентация на требования к результатам освоения темы «Постоянный электрический ток», представленным в рабочей программе УД:

уметь:

описывать и объяснять физические явления и свойства тел;

отличать гипотезы от научных теорий;

делать выводы на основе экспериментальных данных;

приводить примеры практического использования физических знаний;

применять полученные знания для решения физических задач;

определять характер физического процесса по графику, таблице, формуле.

- 4 Структура коллоквиума
- 4.1 Коллоквиум по теме «Постоянный электрический ток» состоит из устного опроса и выполнения практических заданий.
 - 4.2 Задания практической части дифференцируются по уровню сложности.
 - 4.3 Задания практической части предлагаются в традиционной форме
- 4.4 Варианты практической части равноценны по трудности, одинаковы по структуре, параллельны по расположению заданий: под одним и тем же порядковым номером во всех вариантах.

Инструкция для студентов

- 1 Форма проведения текущего контроля знаний по теме «Постоянный электрический ток» дисциплины «Физика»— коллоквиум.
- 2 Принципы отбора содержания коллоквиума: ориентация на требования к результатам освоения темы «Постоянный электрический ток», представленным в рабочей программе УД:

уметь:

описывать и объяснять физические явления и свойства тел; делать выводы на основе экспериментальных данных; применять полученные знания для решения физических задач;

- 3 Структура коллоквиума
- 3.1 Коллоквиум по теме «Постоянный электрический ток» состоит из устного опроса и выполнения практических заданий.
 - 3.2 Задания практической части предлагаются в традиционной форме
- 4. Время выполнения заданий практической части. На выполнение заданий практической части предлагаются 80 минут.
- 5 Рекомендации по подготовке к коллоквиуму При подготовке к коллоквиуму рекомендуется использовать конспекты лекций, а также:

- учебники:
- интернет ресурсы:

Чтобы успешно справиться с заданиями коллоквиума, нужно внимательно прочитать вопросы. Именно внимательное, вдумчивое чтение и понимание вопроса — половина успеха. Будьте внимательны! Обдумывайте тщательно и неторопливо свои ответы! Будьте уверенны в своих силах! Желаем успеха!

«Национальный исследовательский ядерный университет «МИФИ» ИАТЭ НИЯУ МИФИ ТЕХНИКУМ

Вопросы для подготовки устного ответа коллоквиума Тема 6. Законы постоянного тока. Электрический ток в различных средах

- 1. Что называется электрическим током?
- 2. Каковы условия существования электрического тока?
- 3. Действия электрического тока. В чём они заключаются?
- 4. Что называется силой тока; формула силы тока; единица силы тока; как называется прибор для измерения силы тока и как он включается в цепь?
- 5. Каково направление тока?
- 6. Как связана сила тока с величинами микромира?
- 7. С какой скоростью двигаются электроны в проводнике? Распространяется электрическое поле?
- 8. Что представляет собой электрический ток в металлическом проводнике?
- 9. Что называется напряжением? Формула, единица напряжения. Как называется прибор, служащий для измерения напряжения и как он включается в цепь?
- 10. Закон Ома для участка цепи (формула, вольтамперная характеристика).
- 11. Что называется сопротивлением? Единица измерения сопротивления?
- 12. От чего зависит сопротивление проводника? Привести формулу.
- 13. Что такое удельное сопротивление, единица его измерения?
- 14. Как зависит сопротивление проводника от силы тока и напряжения? (Нарисовать графики).
- 15. Как зависит сопротивление проводника от его температуры? Привести формулу.
- 16. Законы последовательного соединения проводников.
- 17. Законы параллельного соединения проводников.
- 18. Формулы работы, количества теплоты, выделяющейся в проводнике при прохождении электрического тока.
- 19. Что называется ЭДС источника, в чём она измеряется, как определяется ЭДС на опыте?
- 20. Закон Ома для замкнутой цепи.
- 21. Что такое короткое замыкание? Формула силы тока при коротком замыкании.
- 22. Что такое электролитическая диссоциация?
- 23. Что такое электролиз?
- 24. Какие вещества относятся к электролитам?
- 25. Как зависит сопротивление электролита от температуры?
- 26. Формула и формулировка законов Фарадея для электролиза.
- 27. Что называют электрохимическим эквивалентом? Какая формула выражает смысл этого понятия? Какова единица в СИ электрохимического эквивалента?
- 28. Газ это проводник или изолятор? Ответ обосновать.
- 29. Что такое ионизация?
- 30. Что такое ионизатор? Типы ионизаторов.
- 31. Как называется ток в газах?
- 32. Какие заряды являются носителями тока в газах?
- 33. Начертите вольт-амперную характеристику газового разряда.
- 34. При каких условиях наблюдают несамостоятельную проводимость газа?
- 35. При каких условиях наблюдают самостоятельную проводимость в газах?

- 36. Что называют рекомбинацией молекул?
- 37. Какой ток называют током насыщения?
- 38. Что такое ударная ионизация? К чему приводит этот процесс?
- 39. Что такое вторичная электронная эмиссия?
- 40. Как можно создать электрический ток в вакууме?
- 41. Что называют термоэлектронной эмиссией?
- 42. Перечислить свойства электронных пучков.
- 43. Как устроена электронно-лучевая трубка?
- 44. Перечислите принципиальные отличия полупроводников от металлов.
- 45. Какие виды полупроводников существуют?
- 46. Как осуществляется собственная проводимость полупроводников?
- 47. Что такое полупроводник п типа?
- 48. Что такое полупроводник р типа?
- 49. Сформулируйте основные положения классической электронной теории проводимости металлов.

«Национальный исследовательский ядерный университет «МИФИ» ИАТЭ НИЯУ МИФИ ТЕХНИКУМ

Вопросы для подготовки устного ответа коллоквиума

Тема 7. Механические и электромагнитные колебания. Переменный электрический ток.

- 1. Определение механических колебаний
- 2. Определение свободных колебаний
- 3. Определение вынужденных колебаний
- 4. Определение и единица периода
- 5. Определение и единица частоты
- 6. Определение и единица циклической частоты
- 7. Определение и единица амплитуды
- 8. Определение гармонических колебаний
- 9. Определение фазы
- 10. Уравнение гармонических колебаний
- 11. Определение электромагнитных колебаний
- 12. Колебательный контур (состав и назначение)
- 13. Определение затухающих электромагнитных колебаний
- 14. Причины затухания колебаний
- 15. Определение активного сопротивления
- 16. Определение закрытого колебательного контура
- 17. Формула для расчёта собственной частоты электромагнитных колебаний
- 18. Формула Томсона
- 19. Опишите превращения энергии в колебательном контуре после зарядки конденсатора от источника тока.
- 20. Что представляет собой переменный электрический ток?
- 21. Как устроен простейший генератор переменного электрического тока?
- 22. Опишите работу простейшего генератора переменного электрического тока.
- 23. Какие проводники называют активными?
- 24. Запишите закон Ома для активного проводника в цепи переменного тока.
- 25. Напишите выражение, связывающее действующее значение силы тока с его амплитудным значением.
- 26. Как рассчитывается полное сопротивление участка цепи переменного тока?
- 27. Получите выражение для расчёта резонансной частоты в цепи переменного тока.
- 28. Как уменьшить опасность возникновения резонанса напряжений?

Форма варианта заданий практической части

Задача № 1

Чему равен период колебаний в контуре, если его емкость 1,5 мк Φ , а индуктивность равна 2,5 м Γ н.

Задача № 2

Прямоугольная рамка вращается в горизонтальном магнитном поле со скоростью 50 об/с. Площадь рамки 100 см². Магнитная индукция 0,2 Тл. Определите закон изменения магнитного потока через рамку в зависимости от времени, если в начальный момент времени рамка расположена горизонтально.

Задача № 3

Сила тока в электрической лампе, включенной в цепь переменного тока, меняется по закону i=0,42cos314t. Сопротивление лампы равно 500 Ом. Запишите, как изменяется со временем напряжение на лампе.

Задача № 4

В цепь переменного тока напряжением U_{π} и частотой увключены последовательно конденсатор, нагрузка с активным сопротивлением R и катушка индуктивностью L. Определить электроёмкость конденсатора C, если сила тока в цепи равна I_{π} . Найти электроёмкость конденсатора, при которой возникает резонанс. Определить силу тока в цепи.

Ш ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО УД

Спецификация дифференцированного зачета по диспиплине «Физика»

Назначение дифференцированного зачета — оценить уровень подготовки студентов по УД «Физика» с целью установления их готовности к дальнейшему усвоению ОПОП специальности 46.02.01 «Документационное обеспечение управления и архивоведение»

1 Содержание экзамена определяется в соответствии с ФГОС СПО специальности 46.02.01 «Документационное обеспечение управления и архивоведение» рабочей программой дисциплины «Физика».

2 Принципы отбора содержания экзамена:

Ориентация на требования к результатам освоения УД «Физика», представленным в соответствии с ФГОС СПО специальности 46.02.01 «Документационное обеспечение управления и архивоведение» и рабочей программой УД «Физика»:

описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;

отличать гипотезы от научных теорий;

делать выводы на основе экспериментальных данных;

приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснить известные явления природы и научные факты, предсказывать еще неизвестные явления;

приводить примеры практического использования физических знаний: законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;

воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.

применять полученные знания для решения физических задач; определять характер физического процесса по графику, таблице, формуле; **измерять ряд** физических величин, представляя результаты измерений с учетом погрешностей;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

для обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;

оценки влияния на организм человека и другие организмы загрязнения окружающей среды;

рационального природопользования и защиты окружающей среды.

знать:

смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения; планета, звезда, галактика, Вселенная;

смысл физических величин: скорость, ускорение, масса, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;

смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;

вклад российских и зарубежных учёных, оказавших наибольшее влияние на развитие физики;

- 3 Структура экзамена
- 3.1 Вопросы экзамена дифференцируются по уровню сложности. Обязательная часть включает вопросы, составляющие необходимый и достаточный минимум усвоения знаний и умений в соответствии с требованиями ФГОС СПО, рабочей программы УД.
 - 3.2 Задания экзамена предлагаются в традиционной форме (устный экзамен).
- 3.3 Билеты экзамена равноценны по трудности, одинаковы по структуре, параллельны по расположению заданий.

Тематика экзаменационных вопросов обязательной части:

Первый и второй вопросы – теоретические, направленные на проверку знаний. Третий вопрос – практический.

- 3.4 Итоговая оценка за экзамен определяется как средний балл по всем вопросам.
- 4 Время проведения экзамена

На подготовку к устному ответу на экзамене студенту отводится не более 30 минут. Время устного ответа студента на экзамене составляет 10 минут.

Инструкция для студентов

- 1 Форма проведения промежуточной аттестации по УД «Физика» дифференцированный зачет в традиционной форме
- 2 Принципы отбора содержания дифференцированного зачета: Ориентация на требования к результатам освоения УД «Физика»:

уметь:

описывать и объяснять физические явления и свойства тел отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных;

приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснить известные явления природы и научные факты, предсказывать еще неизвестные явления;

приводить примеры практического использования физических знаний применять полученные знания для решения физических задач;

определять характер физического процесса по графику, таблице, формуле;

измерять ряд физических величин, представляя результаты измерений с учетом погрешностей;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни:

для обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;

оценки влияния на организм человека и другие организмы загрязнения окружающей среды;

рационального природопользования и защиты окружающей среды.

знять:

смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения; планета, звезда, галактика, Вселенная;

смысл физических величин: скорость, ускорение, масса, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;

смысл физических законов классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;

вклад российских и зарубежных учёных, оказавших наибольшее влияние на развитие физики;

- 3 Структура дифференцированного зачета
- 3.1.Задания дифференцированного зачета предлагаются в традиционной форме.

Билеты дифференцированного зачета равноценны по трудности, одинаковы по структуре, параллельны по расположению заданий.

Тематика вопросов обязательной части:

Первый и второй вопросы – теоретические, направленные на проверку знаний.

Третий вопрос - практический связан с решением задачи.

- 3.2 Итоговая оценка за зачет определяется как средний балл по всем вопросам.
- 4 Время проведения зачета

На подготовку к устному ответу на зачете студенту отводится не более 30минут. Время устного ответа студента на зачете составляет 10 минут.

7 Рекомендации по подготовке к зачету

При подготовке к зачету рекомендуется использовать конспекты лекций и материалы учебника.

Чтобы успешно сдать зачет, необходимо внимательно прочитать вопросы. Именно внимательное, вдумчивое чтение — половина успеха. Будьте внимательны! Обдумывайте тщательно свои ответы! Будьте уверены в своих силах.

ФОРМА БИЛЕТА

Национальный исследовательский ядерный университет «МИФИ» Обнинский институт атомной энергетики Техникум

	УТЫ	ЕРЖДА	Ю
Председатель	цикловой	комисс	ии
			_/ /
<u> </u>	<u></u> »	_ 202	_ г.

БИЛЕТ № 01

по дисциплине: Физика

- 1. Силы в природе.
- 2. Принцип построения температурных шкал Цельсия и Кельвина. Абсолютный нуль температур, его физический смысл с точки зрения молекулярно-кинетической теории.
- 3. Задача. Определить давление, при котором 1 ${\rm M}^3$ газа, имеющего температуру 60°C, содержит $2,4\cdot10^{26}$ молекул.

Вопросы для подготовки к зачету по дисциплине «Физика» для студентов специальности 46.02.01 «Документационное обеспечение управления и архивоведение»

1 семестр

Тема 1.1. Кинематика

- 1. Основные понятия кинематики. Равномерное прямолинейное движение.
- 2. Равнопеременное движение.

Тема 1.2. Динамика

- 1. Масса и сила, способы их изменения. Принцип суперпозиции сил. Законы динамики
- 2. Силы в природе.

Тема 1.3. Законы сохранения в механике

- 1. Механическая работа, мощность.
- 2. Импульс. Закон сохранения импульса.
- 3. Механическая энергия и её виды. Закон сохранения механической энергии

Тема 2.1. Основы молекулярно-кинетической теории

1. Основные положения молекулярно-кинетической теории. Наблюдения и эксперименты, подтверждающие истинность этой теории.

- 2. Атомы и молекулы структурные единицы вещества. Оценка размеров молекул, их масса, количество вещества, относительная молекулярная (атомная) масса вещества, постоянная Авогадро, молярная масса.
- 3. Строение газообразных, жидких и твердых тел, характер движения молекул в этих телах. Силы взаимодействия молекул.
- 4. Идеальный газ в молекулярно-кинетической теории. Макроскопические и микроскопические параметры газа.
- 5. Принцип построения температурных шкал Цельсия и Кельвина. Абсолютный нуль температур, его физический смысл с точки зрения молекулярно-кинетической теории.
- 6. Основное уравнение молекулярно-кинетической теории. Понятие величин, входящих в состав этого уравнения.
- 7. Уравнение Клапейрона Менделеева. Понятие величин, входящих в это уравнение. Границы применимости уравнения.
- 8. Изопроцессы, их определение, законы и графики.

Тема 2.2. Основы термодинамики

- 1. Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии.
- 2. Теплопередача, её виды. Количество теплоты. Формула для расчёта количества теплоты, необходимого для нагревания тела.
- 3. Удельная теплоёмкость вещества. Теплоёмкость тела. Уравнение теплового баланса.
- 4. Работа газа при изменении его объёма. Первый закон термодинамики
- 5. Первое начало термодинамики для изопроцессов. Адиабатный процесс

2 семестр

Тема 3.1. Электрическое поле

- 1. Электрический заряд и его свойства (элементарный заряд, точечный заряд, дискретность заряда, закон сохранения заряда)
- 2. Явление электризации
- 3. Закон Кулона
- 4. Электрическое поле и его свойства
- 5. Напряженность электрического поля
- 6. Изображение электрических полей (однородного, неоднородного)
- 7. Потенциал электрического поля
- 8. Разность потенциалов электрического поля
- 9. Электрическая емкость
- 10. Конденсатор, энергия заряженного конденсатора
- 11. Соединение конденсаторов

Тема 4.1. Законы постоянного тока

- 1. Основные положения классической электронной теории проводимости металлов.
- 2. Постоянный электрический ток. Определение, основные характеристики, условия возникновения.
- 3. Источник постоянного тока, его роль в замкнутой цепи. Электродвижущая сила.
- 4. Закон Ома для участка цепи. Сопротивление проводника, зависимость сопротивления от размеров проводника и температуры.

- 5. Последовательное и параллельное соединения проводников.
- 6. Закон Ома для замкнутой цепи. Понятие короткого замыкания, сила тока короткого замыкания.
- 7. Работа и мощность постоянного тока. Закон Джоуля Ленца.

Тема 4.2. Магнитные явления

- 1. Магнитное поле и его свойства.
- 2. Характеристики магнитного поля. Линии магнитной индукции магнитного поля, их свойства.
- 3. Магнитное поле прямолинейного, кругового тока и соленоида. Определение полярности соленоида с током.
- 4. Сила, действующая на проводник с током в магнитном поле. Закон Ампера.
- 5. Действие магнитного поля на движущийся заряд. Характер движения заряженных частиц в магнитном поле.

Тема 4.3. Электромагнитная индукция

- 1. Магнитный поток. Явление электромагнитной индукции.
- 2. Э.д.с. индукции, возникающая в проводнике при его движении в магнитном поле.
- 3. Закон электромагнитной индукции. Опыты Фарадея. Правило Ленца.
- 4. Явление самоиндукции. Э.д.с. самоиндукции. Индуктивность. Энергия магнитного поля.

Тема 5.1. Механические и электромагнитные колебания

- 1. Механические колебания. Параметры колебательного движения. Виды колебательного движения.
- 2. Гармонические колебания. Уравнение гармонического колебания. Явление механического резонанса.
- 3. Электромагнитное поле и его распространение в пространстве, свойства поля. Колебательный контур Герца.
- 4. Свободные электромагнитные колебания, их возникновение в колебательном контуре. Параметры колебаний.
- 5. Превращение энергии в колебательном контуре.
- 6. Переменный электрический ток, его возникновение.
- 7. Законы изменения тока и напряжения в цепи переменного тока. Действующие значения тока и напряжения.
- 8. Емкостное и индуктивное сопротивления. Закон Ома для полной цепи переменного тока.
- 9. Явление электрического резонанса.
- 10. Трансформатор, его назначение. Режимы работы трансформатора.